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ABSTRACT

X The influence of random phase errors on theangular resolution of
a focused synthetic aperture radar system is treated. The principal
measure of performance has been taken as the mean envelope power
at the system output. This system output power is evaluated exactly,
although not in closed form, based on the following reasonable
assumptions: (1) the real beam pattern is Gaussian; (2) the random
phase error is essentially a geometry independent ergodic process
with a Gaussian amplitude distribution and zero mean; and (3} the
random phase error has a Gaussian correlation function.

The curves presented in this report can be used to estimate
expected systermn power response, expected system resolution, and
effective aperture length beyond which, inthe presence of phase error,
little gain in resolution is expected.

It was found that multiple sources of error withdifferent correlation
intervals make explicit solution of the integral squation for system
power response practically impossible. Inthis situation, a reasonable
approachis to evaluatethe system power response separately for wach

error. If oneof the errors is clearly dominant, it maybe regarded as

V\

bounding achievable performance.
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INTRODUCTION

Previous analyses regarding the effects of random phase errors on

L, have been found deficient

focused synthetic aperture radar systems
for purposes of radar resolution determination and system design,

Reference 1 presents an approximate (Monte Carlo) analysis of the
expected system transfer function for various conditions of mean-square
phase error and phase~error correlation length for an arbitrarily assumed
exponential correlation function, Certain shortcomings exist in the analysis,
First, the range of parameters is restricted to investigation of system
response in the vicinity of the 3-db beamwidth, Second, many calcula-
tions are made by approximate analyses which the author finds difficult
to relate to system resolution, e.g., beam canting, main lobe to sidelobe
power, and 3-db beamwidth,

This author maintains that the 3-db bearnwidth has questionable signifi-
cance in resolution of a radar system, When expected beamwidth is used to
estimate resolution, 3 then beamwidth at the limits of system dynamic range
(20 to 30 db) is the significant parameter, In other words, when receiving
a strong target at maximum system input, the main question is how close a
target of minimum system input can be placed and its presence still be
resolved, This latter definition of resolution is obviously the most stringent
because, as will bhe shown later, the 20- to 30-db beamwidth expands very
rapidly with phase errors, while the 3-«db beamwidth is comparatively

insensitive to these errors,

.



The high sensitivity of the 20~ to 30-db beamwidth to phase errors allows
fairly accurate estimates of system resolution from the expected power
output alone. Considering the accuracy of phase-error data, use of statis-
tical decision theory is unnecessary for all practical purposes. This is
fortunate because an exact analysis of the present highly nonlinear problem
using statistical decision theory would be a formidable undertaking, to say
the least.

Reference 2 carries out what is essentially an exact analysis of a
purported measure of beamwidth: the radius of gyration of the system out-
put. It is clear, however, for a commonly considered system response, the

sinzx/x2 fimc:tion,4 that no radius of gyration exists that is even remotely

connected with the first lobewidth of the system output. A measure of

resolution as sensitive as this to amplitude weighting of the received data

is clearly dangerous to apply and cannot give a true measure of system
resolution. The criterion used in Ref. 2 is consequently discarded, and
its application to synthetic aperture radar resolution is considered invalid.

An omission in all previous analyses of synthetic aperture radar
systems has been the determination of array length for a specified resolu~
tion in the presence of random phase errors. In the author's estimation,
this quantity is the heart of system design, It is unreasonable to build a
processor, storage facility, etc, compatible with a 4000~foot array when
(due to irreducible random phase errors) nearly the same resultant

resolution is achieved with a 2000~-foot array,
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Considering the foregoing, it is worthwhile to re=attack this problem
from a new perspective, It is not anticipated that the approach in this
report is the final answer, but the results obtained from it are considered
to be of greater utility in system design,

Certain reasonable physical assumptions are made as to the character
of the system in order to obtain exact mathematical solutions. The param-
eter calculated is the expected system average power output. Exact curves
are presented to allow the system engineer to judge for himself the resultant
resolution. Since the more logical 20~ to 30-db resolution is highly sensitive
to phase errors, the results obtained using a simple and somewhat arbitrary
resolution estimate based on power response alone are not far from those

that would be calculated using an exact statistical decision theory approach.

II. ANALYSIS

A vast amount of literature is available on synthetic aperture radar
systems. No duplication or repetition of these works will be attempted in
this research report. It is assumed that the reader is thoroughly familiar
with the contents of Ref. 5 and all papers referenced therein.

This report deals only with the fully coherent focused system. A number
of assumptions are made to simplify analytical study of the system.

1) Sampling rate of the radar is sufficiently high that noangular

ambiguities appear in the data and also high enough that
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received signal spectrum splatter due to very short term
random phase fluctuations can be accommodated. This
assumption allows low-pass filtering of the coherently
detected received pulses to yield a CW Doppler history of a
target. Continuous waveforms are much easier to treat
mathematically and their use results in no loss of generality.

2) Range ambiguities for particular system geometries are
suppressed by proper signal design. No further consideration
of ambiguities will be treated.

3) Linearity of the radar system is assumed so that system
output to any arbitrary field of targets can be obtained by
voltage summation of the individual target responses.

4) A single dominant target is heing viewed in each resolution
ce11.6 Many targets of approximately the same return
strength within one resolution cell may be approximately
handled by assuming that the system output is a Rayleigh
distribution with some mean power level. A small number
of targets of approximately equal strength in one resolution
cell can cause '"break up'' of the return due to cancellation
and reinforcement. This is one of the reasons for the
different appearance of optical and radar maps.

Consider now Fig. 1, which depicts the system geometry while responding
to a single point target. It is assumed that an observer at 0 fixed relative

to the real antenna watches the target, T, go by with velocity, v. Time is



referenced to zero as indicated in the figure. The observer and his data
processor are ''matched" to the geometry of Fig. 1. Any change in the true
situation from that of Fig. 1 due to improper target (vehicle) motion, clock
(oscillator) instabilities, or propagation-medium scintillation must

be compensated for by either a change in data processing or by accepting the
change as random error, with the resulting system degradation. This report

is concerned only with uncompensated phase errors and their effects on

angular resolution.

Let the radar at time, t, transmit the signal

Vt = Et cos wt (1)

where Et = transmitted signal amplitude, volts

w = carrier radian frequency, rad/sec

i

Asgsuming Gaussian real antenna beam patterns, it is a simple matter

to show that the return signal from a point target is given to first order by

V_=E_exp (-2kt%) cos [0t + a + pt° + g,(0)] (2)

where Er = received signal amplitude, volts

beam factor, sec_2

®w = carrier radian frequency, rad/sec

fixed phase shifts which may exist to and from target, e.g.,

f
1

2R/c plus propagation and equipment biases.
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coefficient for change in phase versus time due to quadratic
range change (Fig. 1), sec™2

ith ensemble member of an ergodic random Gaussian phase

-6
s
—
(2
=
1

process of zero mean and Gaussian correlation function, rad

It is not necessary to know the value of ¢ as it will cancel in later calcula-
tions. The terms f and k may be computed from very simple geometric

considerations. The results are

2

B = -i;%— , sec-Z (3)
2

K = 2(%) , sec (4)

where L =length at the target to the 1/e (-4.34 db) points of the real

antenna one-way power pattern, ft

v = vehicle velocity, ft/sec

A

carrier wavelength, ft

R = range to target at t = 0 (See Fig. 1), ft N

For convenience,  and k are used in the following analysis to minimize
symbology.

The synthetic aperture radar system correlates the received signal,
given by Eq. (2}, with a delayed in-phase and quadrature replica and pre-
sents an average power output equal to the sum of the squares of the in-phase

and quadrature correlator responses. Figure 2 depicts this process. The



limits of integration are shown to be infinite in Fig. 2. In a real system, a
finite integration from ~-L/v to L/v would be accomplished. Since mathe-
matical tractability is sought and, further, since, with the assumed Gaussian
weighting, there is little difference in the correlator output if L/v or the
infinite limits are used, the analysis to follow uses infinite limits.

As depicted, the correlators are '""matched" filters for the signal of
Eq. (2) and, as such, maximize the signal-to-noise ratio in the output for a
time shift A = 0. However, there are occasions when all the data received
from a target on its pass through the real beam cannot and should not be
processed. These situations occur when (1) processing time is precious and
resolutions corresponding to real beam length, L, are not needed, (2) lack
of phase coherence across length, L, yields a point of diminishing returns
and processing more data gives little increase in system resolution, and
(3) vehicle constraints have forced the use of a smaller real antenna than
desirable from a resolution point of view.

As a consequence of the above, the reference functions chosen for

analysis are generalized to the following

-

-
exp —Zk(t - A) cos [wt + B(t - ) + y] (5)

-
exp L"Zk(t ;A) sin [0t + p(t - &)% + ] (6

where m = (by definition) the fraction of the data utilized in processing,

0<nzl

-10-



N, as depicted in Eq. (5) and Eq. (6) may be greater than 1 and not necessarily
restricted to the range 0 < n < 1. However, in the presence of noise, the
signal-to-noise ratio at the correlator outputs will drop off for n > 1.7 Since
for every m > 1 there is a 1 < 1 with the same signal-to-noise ratio, it is
obvious from an engineering point of view that the range of n resulting in the
least data processing will always be used; ergo, 0 < n< 1.

Having dispensed with all the assumptions and system descriptions,
injection of the voltage given by Eq. (2) into the system of Fig. 2 with the
reference functions of Eq. (5) and (6) gives the following average power

output

Po:f-:f-: oxp _Zk[x2+yz+(xT_]A)ZJr(yT-]A)Z]H

X cos [2AB(x - y) + ¢i(x) - ¢i(Y)] dxdy (7)

The baxr over Eq. (7) is the ensemble average over - Since the average of

a sum is the sum of the averages and, further, since sin [tpi(X) - ¢i(y)] =0

and ¢i(x) - ¢i(y) = 0, expansion of the cosine function in Eq. (7) yields

2, 2 (x-A (y - A
P = -2k|x“ + +( ) +(L )
~-00J -0

X cos [2AB(x - y)] cos [¢i(x) - ¢.(y)] dxdy (8)

-11-



Since ¢i(t) has been assumed to be Gaussian, it is recognized immedia.'cely8

that

[pyx) - 9,17
cos [4,(x) - ¢,(y)] = exp {——Fp— (9)
Simplifying Eq. (9) we get
cos [p,(x) - 9,()] = exp [-[R(0) - R(x - y)]| (10)

where R(x - y) = correlation function of the random phase

perturbations, rad2

Let us assume now R(x - y) is Gaussian in nature, thus

2

[
R(x ~ y) =0’2 exp [-M;Zﬂ— Y rad” (11)

T
o]

2
where o~ = mean square value of phase error, rad

time it takes the correlation function of phase to drop to

4
il

1/e of its zero argument value, .ec

Substituting Eq. (11} into Eq. (10) and Eq. (10) into Eq. (8), we finally

obtain

-12-



® p00 ) 5
P, = exp (-o‘z)f f exp {-2k x2+y2+(x 1; A) + (Y :1 A)
~00J-c0

e}

211
+ ol exp --(X—'ZY—)—- J X cos [2AB(x - y)] dxdy (12)

T
C

Our task now is to evaluate the interesting integral of Eq. (12). Expand-
ing the exp {0‘2 exp [-(x - Y)Z/Ti]} term in an infinite series, which is valid

for all values of the exponent, Eq. (12) becomes

2 qzj e 2 2 [x-A 2 - A 2
P, = exp (-0 ") =T exp {-2k|x“+ ¥y +( a ) +(Yﬂ )
720 -00J-00

: 2
- J—(-}-c——-zl)— J cos [2AB(x - y)] dxdy (13)

T
[od

Expanding the exponent in Eq. {13) and performing the excruciating
double integration with the help of integral tab1e59 give the following exact

result for P0

2 2

2 . X 2
e exp "4(?}:*) Ly —L—s +4L0 T
0 <x eff/ (" + 1)
4 C

Jeo) T ‘
p' . exp (_0_2) eff (14)
0 1/2
j=0

-13-



g
1

! .
where o = normalized system power response
.

x = distance along vehicle track, ft

n
1

(2/“)()‘R)/Leff’ - 4.34db (1/e) synthetic aperture

0
response width, under no phase-error conditions, ft
5 1/2
L = L ——— , by definition, the effective synthetic
eff 2 y
1+ 1/
aperture length, ft
x =vT, the distance to 1/e point of the phase error
correlation function, ft
n = (by definition) the fraction of available data processed.,

See Eq. (5) and Eq. (6).

Two key quantities defined above bear repeating as Eq. (15) and

Eq. (16).1°

2[ AR '
x,. =2 , ft (15)
0 T'T(Leff)
5 1/2
L o =nfl——? , ft (16)
eff (1+1/n2)

Note that, for small n, Eq. (14) reduces identically to the two-way power
pattern of the real beam. This is expected since, for small n, little proc-~

essging of the received data is performed.

-14-



For the case of considerable beam sharpening, xO/Leff - 0, the exact

equation, Eq. (14), reduces to

o1
&2 exp —4(-—)2 1+ J 4
- x 2
0 xc)
@ 4
P' = exp (-2 E (Leff - (17)
.0 1/2
j=0
it ——

X 2

4(L'eff>

Note that in Eq. (17) the power response of the system depends only on

(1) o, the rms magnitude of the random phase error, (2) Xc/Leff’ the ratio
of the correlation distance of phase errors to effective array length, and

(3) x/xo, the normalized distance from maximum output. Note also, as

xc/Leff - o (complete correlation across the array), Eq. (17) becomes

P(') = exp [-4(%0)2:] (18)

and is completely uninfiuenced by the rms magnitude of the phase error.
This is expected. Egquation (18) demonstrates the significance of Xq as the
width to the 1/e (-4.34 db) power response with no phase error.

Figures 3{a) - (n) are plots of Eq. (17) for various values of xc/Leff

and o. Neglect of the last term in Eq. (14) for the parameters chosen yields

-15-



an overestimate of ''sidelobe! power11 of 0.1 db at x/x0 =5 and
exponentially less error for smaller x/xo.

Figures 4(a) - (e) are interesting and can assist in assessing the effective
array length one should use in th.e presence of phase errors to achieve a
specified 20 db synthetic beamwidth. These curves are normalized and can
be used for any range R or system wavelength . For the special case of
R=R,= 1.8 x 106, ft, and X\ = Ay = 0.1, ft, the 20 db half-beamwidth
appears directly as the ordinate.

Note the rapid expansion with phase error of the 20-db beamwidth as
contrasted to the 3-db beamwidth. A reasonable definition of resolution is
the half-beamwidth to the point equal in decibels to the dynamic range of the
system, For N strong targets in the vicinity and for short phase=-error
correlation distances, it is suggested that a safety factor of 10 loglO(N)

be added to the dynamic range [see Fig, 3(a)]. It is felt that this is a

good engineering criterion considering (1) the sensitivity of the dynamic-range

beamwidth to ¢ and X s and, (2) the lack of precise knowledge of ¢ and X .

III. CONCILUSIONS

For the first time, reasonable assumptions regarding the physical
system and random phase errors have yielded an exact re sult that predicts
the expected power response for a synthetic apertu?e radar system.

Complete freedom to choose the fraction of the received data to be proc-

essed has been left to the system designer by his choice of 1.

“16=



The assumed Gaussian weighting not only yielded a mathematically trac-
table systembut, in addition, gave an expected response with no sidelobes.

The definition of resolution suggested by the author is the half-beamwidth
to the dynamic range point on the expected power response curve. A figure
of 20 db was chosen for illustration in Fig. 4(a) - (e). The definition of reso=
lution as the dynamic-range half-beamwidth is consistent with (1) the high
sensitivity of resolution to ¢ and X, and (2} the inaccurate knowledge of
these parameters.

It is felt that an exact decision theory attack on this problem would not
be fruitful because of its mathematical formidability and the inaccurate
available data on o and X,

Equations (11) and (12) indicate that multiple sources of error with
different correlation intervals make explicit solution of the integral equation
for system power response a formidable undertaking. In this situation, a
reasonable approach is to evaluate the system power response separately
for each error. If one of the errors is clearly dominant, it may be regarded

as bounding achievable performance.

-17=
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